Monitoring Land-Atmosphere CO₂ Exchange: The SMAP Level 4 Carbon (L4C) Product

SMAP L4C Scientist & Developer
University of Montana, Missoula, MT, USA

email: lucas@ntsg.umt.edu

website: www.ntsg.umt.edu

GMAO Seminar, March 31, 2017

Water & Ecological Strategy

Photo Credit: Samantha Travers https://ianluntecology.com/2014/12/21/repeat-photo-gallery

Role of Soil Moisture from Ecosystem to Global Scale

- Plant production (GPP) and ecosystem respiration respond differently to water availability.¹
- Soil moisture and VPD have differing influences on GPP drought response.²
- Water availability controls inter-annual variability in land-atmosphere CO₂ exchange.³

¹Jung, Nature 2017; ²Novick, Nature Clim. Change 2016; ³Poulter Nature 2014

The Data Cycle

Research Questions

- Does soil moisture improve skill for estimating net ecosystem CO₂ exchange (NEE)?
- What is the incremental value of using SMAP information for estimating NEE?
- What can these estimates tell us about NEE response to recent soil moisture variability?

Soil Moisture Active-Passive (SMAP) Mission

- L-band Radiometer (Passive, 1.41
 GHz) and Radar (Active, 1.26 GHz)
- Radiometer 39 km x 47 km
- Radar 1-3 km footprint
- 6 meter antennae
- Global coverage every 3 days, twice daily > 50° N/S latitude, 6am/6pm

SMAP Level 4 Carbon (L4C) Model in a Nutshell

 Global daily 1-km processing, posted to 9-km Equal Area Scalable Earth (EASEv2) grid summarized by Plant Functional Type (PFT).

L4C Data Products

Multi-tier Validation

Flux Tower Calibration & Validation Network

- Core Validation Sites (CVS): 26 locations, 21 unique grid cells, provide recent flux tower data for SMAP mission period (March 31, 2015-present).
- Calibration Sites: 228 locations, FLUXNET La Thuile Database, historic fluxes for SMAP Nature Run period (2001-2007).

GPP Calibration (Shrubland Example)

Soil Moisture Constraint Exclusion Experiment

Vapor Pressure Deficit → GPP

Root Zone Soil Moisture → **GPP**

- Soil moisture affects GPP in arid shrub/grass regions.
- VPD influence extends to most forests.
- Soil moisture has a widespread impact on soil respiration.

Flux Tower Validation Results

Overall:

NEE [g C m ⁻² d ⁻¹]				GPP [g C m ⁻² d ⁻¹]				R_{eco} [g C m ⁻² d ⁻¹]			
R	RMSE	ubRMSE	N	R	RMSE	ubRMSE	N	R	RMSE	ubRMSE	N
0.52	1.04	0.79	26	0.72	1.27	0.85	26	0.65	1.16	0.62	24

Individual Sites:

Forest,
Savanna Tundra

Uncertainty Estimates & Quality Assessment

Estimated Daily Average NEE RMSE [g C m⁻² d⁻¹]

- Error propagated using input error and L4C model derivatives.
- Scales proportionally with annual flux and biomass.
- Fit plateaus for RMSE>1.5 g C m⁻² d⁻¹ (Cropland & Forest).

GPP Comparison with MOD17 & GOME-2 SIF

L4C Increases Seasonal Cycle Amplitude

L4C minus MPI-MTE

Monthly Correlation Summary for CVS Flux Towers.

	Site	SIF	L4C
SIF	0.63		
L4C	0.85	0.73	
MOD17	0.81	0.63	0.85

Mean Seasonal Cycle by Latitude

NEE Comparison with CarbonTracker & MPI-MTE

SMAP Influences L4C in Semi-Arid Regions

Daily GPP Anomaly Stdev.

Impact of SMAP Obs on L4C GPP

(L4C using L4SM vs. NatureRun RMS Difference)

- L4C regions of largest inter-annual anomaly variance generally align with SMAP impact.
- Suggests potential for SMAP to inform interannual variability.
- More SMAP influence in China following upcoming L4SM version release.

North America Anomalies (2015 & 2016)

Southern Hemisphere Anomalies (2015 & 2016)

Following slides focus on Australia ...

[g C m⁻² d⁻¹]

-1

Australia Rainfall Anomaly (Sep. - Nov. 2016)

Australia L4SM Perspective

- L4C anomaly driven by increased greenness and relaxed soil moisture constraint.
- SMAP observations added water to L4SM root zone analysis strengthening the wet anomaly.

tainfall Decile Ranges

L4C Caveats

- NEE source/sink results depends on SOC initialization.
- Soil moisture and other input data have biases.
- Representation error.
- Extrapolation error.
- Model structure and optimization.

Summary & Conclusion

- L4C dataset available at NSIDC (updates for MODIS Collection 6 to be released mid-April): http://nsidc.org/data/SPL4CMDL
- L4C Provides a new moisture-constraint perspective relative to other global datasets.
- SMAP soil moisture incremental information content is highest in arid and semi-arid regions.
- These regions coincide where soil moisture controls L4C NEE variability.
- SMAP value not yet clearly quantifiable longer time series required.

Focus Points Looking Forward

- Compare to and diagnose top-down estimates.
- Use findings to improve process models and data assimilation.
- Revisit initialization with respect to disturbance & effects of sub-scale landcover.
- Decouple interactions of drought response drivers including VPD, soil moisture, mortality, and nutrient cycle/CO₂ fertilization.

Extra Slides

GPP Constraint Exclusion Experiment By Landcover

Pooled Correlation (Closed Symbols)

- Includes spatial patterns/biases.
- Closely aligned with fitting procedure cost function.

Average Correlation (Open Symbols)

- No spatial information
- Typical values for an individual site

Merging Soil Moisture Datasets (Pre-SMAP)

Correlation vs. In Situ Soil Moisture

Merging Weights [0,1]

Estimating Ecosystem and Soil Heterotrophic Respiration (Pre-SMAP)

Autotrophic Heterotrophic Normalizing Term
$$RECO = \underbrace{f_{aut}GPP} + \underbrace{f(TSOIL)f(SM)k_{max}SOC}$$

Monitoring the Biosphere with Microwave Land Observations

Open Water Fractional Coverage

Freeze-Thaw State (non-binary)

Vegetation Optical Depth

Fine-Scale Surface Meteorology from MODIS

High Elevation Big Hole Valley, MT

Oyler, J.W., S.Z. Dobrowski, Z.A. Holden, and S.W. Running (2016), Remotely sensed land skin temperature as a spatial predictor of air temperature across the conterminous United States. *J. Appl. Meteorol. Climatol.*, http://dx.doi.org/10.1175/JAMC-D-15-0276.1.

- MODIS LST climatology was a significant unique predictor of station daily minimum temperature.
- Potential for improving LUE model estimates.
- Used in TopoWx 1-km daily meteorology dataset for CONUS: https://github.com/jaredwo/topowx

A Closer Look at Vegetation Optical Depth

2004 Fires (used in study)

VOD Yearly Maximum

Jones, M.O., et al. 2013 Global Change Biology, 19:3111-22

- Tracks boreal forest fire recovery
- Validated with GPS ground station "Multi-path" retrievals

Jones, M.O., 2012, *Rem. Sens. Environ.* 123: 324-33. Jones, M.O., 2014, Int. J. Biomet. 58: 13605-15.

Tracking a Single Rain Event (Australia)

L4_C Root Zone SM Rescaling

Rescaling of root zone soil moisture improves L4C agreement with observations

$$\theta_{\text{ln}} = \ln \left(\frac{\theta_{sat} - \theta_{wpsat}}{100 - \theta_{wpsat}} * 100 \right)$$

$$\theta_{rescaled} = \frac{\ln(\theta_{ln})}{\ln(100)} *95 + 5$$

L4_C Land Mask and Vectorization Procedure

Nested-resolution ¹EASE Grid v2 Processing

¹Brodzik, et al., ISPRS Int. J. Geo-Inf. 2012, 1, 1, 32-45; doi:10.3390/ijgi1010032

FPAR Climatology Replacement

Percentage of Grid Cells with > 50 % FPAR Clim Fill (L4_C Vb1010 April 13-Dec 31, 2015)

EM & Kalman Smoother Simulation Results

EM & Kalman Smoother Soil Moisture Results

Evaluating Soil Moisture Information for Ecosystem Respiration

Separating Temperature and Emissivity

Brightness Observations:

Emissivity Model:

